
Using Domain-Driven Design to Evaluate Commercial
Off-The-Shelf Software

 Harald Wesenberg
Statoil ASA

Business Application Services – Energy
Trading Solutions

Rotvoll
N-7005 Trondheim

+47 995 79 083
hwes@statoil.com

Einar Landre
Statoil ASA

Business Application Services – Application
Development Center

Forusbeen 50
N-4035 Stavanger
+47 414 70 537

einla@statoil.com

Harald Rønneberg
Statoil ASA

Corporate Services – Information Technology
Forusbeen 50

N-4035 Stavanger
+47 915 76 165

haro@statoil.com

Abstract
Purchasing a Commercial-Off-The-Shelf (COTS) package
solution can be a complex and daunting task. Selecting and
evaluating the right candidate is difficult, especially when the
solution aims at the heart of company business. The company’s
competitive edge must be maintained, while at the same time
ensuring the intended goals such as reduced costs and better
functional coverage. A good Enterprise Architecture should be a
prime tool when evaluating several solutions against the
company’s needs.

In this paper we will recount the experience and lessons learned
when we evaluated three COTS systems to replace a set of legacy
oil trading and operations systems. Based on weaknesses in our
Enterprise Architecture, we applied strategic domain-driven
design principles to extend our Enterprise Architecture during the
evaluation. We found that these techniques enabled us to
thoroughly analyse our domain with the domain experts and
provide answers based on tacit domain knowledge, without going
through the cost and effort of performing a full-scale architectural
analysis. At the same time, the tacit domain knowledge became
explicit and shared, easing the communication with various
stakeholders.

Categories and Subject Descriptors D.2.11 [Software
Engineering]: Software Architectures

General Terms Management, Theory, Experimentation.

Keywords Domain-Driven design, Enterprise Architecture,
context map, responsibility layer, information architecture.

1. Introduction
Statoil is in the process of replacing a set of legacy software
systems with new systems supporting our Wet Supply Chain
(WSC) [5]. One of the options we were considering was to buy a
commercial off-the-shelf system to cover part of our needs.

After a Request For Information (RFI) had been sent out,
responses were received from several vendors, and some of these

were short-listed for further evaluation and a possible Request For
Proposal (RFP). We planned to use the Enterprise Architecture for
the WSC as one of the tools to assess how well each COTS
candidate fitted into our overall architecture. We were especially
interested in the following aspects of the candidates:

• Functional Coverage: How well did the candidates
cover our functional needs

• Information model: Did the candidates have the
necessary information properly structured to cover our
information needs

Based on the architectural fit of the different candidates, we
expected to select one or more of them for a RFP.

This evaluation effort coincided with our adoption of Domain-
Driven design [3] and its use to expand the Enterprise
Architecture for our existing system portfolio [5]. When we
experienced problems with the use of our Enterprise Architecture,
we decided to try using Domain-Driven design techniques to see
if it could bring the evaluation further.

Before we continue the report, a short introduction to Enterprise
Architecture and Domain-Driven design is in order.

1.1 Enterprise Architecture (EA)
According to [1] Enterprise Architecture (EA) identifies the main
components of the organization, its information systems, the ways
in which these components work together in order to achieve
defined business objectives, and the way in which the information
systems support the business processes of the organization. The
components include staff, business processes, technology,
information, financial and other resources.

Enterprise architecture is based on a holistic view rather than an
application-by-application view. Most enterprises choose to do
their Enterprise Architecture work according to the practices
defined by available frameworks such as TAFIM [6], TOGAF [7]
and Zachman [8] and tailored to reflect the architectural
principles, standards and reference models defined by the
individual enterprise. The frameworks provide a set of views
supporting the different stakeholder interests, e.g. business
process, information, functions and technical infrastructure.

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

824

We have chosen to use the Enterprise Architecture as a
foundation for describing the need for new IT systems and
strategies for modernizing existing ones. It should provide a clear
path for development or purchase of new systems and should be
the natural start point when scoping and prioritizing new projects.
For this to be possible it must be anchored in a joint business &
IT vision identifying business requirements and IT objectives [2].

Although different frameworks have different perspectives, most
of them have some common building blocks. These common
building blocks of an Enterprise Architecture are found in Figure
1.

Business
Processes Information

Function
(Service)

Physical
System

(Technology)

Allocated to

Enterprise Architecture

Figure 1: The classic building blocks of an Enterprise

Architecture

1.2 Domain-Driven Design
Domain-Driven design is a philosophy whose focus is on the
intricacies of the domain and where the objective is to make these
intricacies explicit in the domain model and its implementation in
code. According to [3] the premise of Domain-Driven design is
two fold:

• For most software projects, the primary focus should be
on the domain and domain logic and

• Complex domain designs should be based on a model.

Domain-driven design is not a technology or a methodology. It is
a way of thinking and a set of priorities, aimed at accelerating
software projects that have to deal with complicated domains.
The primary source for these principles is Eric Evans’ book on
Domain-Driven Design [4].

Although Domain-Driven Design primarily is aimed at systems
development and not COTS candidate evaluation, context maps
and responsibility layers from the strategic level of domain-driven
design proved to be very useful during our COTS evaluation.

1.2.1 Context Maps
Context maps are maps of the information system landscape
partitioned into suitable groups of common functionality. Each

context then contains information and functionality related to that
context. Examples of a context are Physical Crude Oil Trading
(information and functionality related to the process of trading
physical crude oil) and Crude Supply Operations (information and
functionality related to the operation of moving crude oil from
location to another). Another usage of context maps is mapping
out each information system in relation to other information
systems. Examples of such contexts are the Trading system and
the Supply Operation system from [5].

When the contexts have been identified, it is then possible to
investigate the relationships between each context. Based on the
characteristics of the relationship, potential challenges and
interaction problems between the different contexts may be
identified and described. The most common relationships are

• Customer/Supplier: One context is a supplier to the
other, supplying information and functionality as
required by the customer context. Agreement between
the contexts are reached by negotiations.

• Conformist: The information model, functionality and
architecture of conformist context must conform to the
source context, without influence on how the context
develops over time.

• Shared Kernel: Two contexts share a set of common
information and functionality, and all updates to one
context are also updates to the other.

Earlier we had performed various context map analysis on our
existing portfolio of systems, and had found this to be a valuable
tool in the communication of the inherent properties of our
domain [5].

1.2.2 Responsibility Layers
During domain exploration, the resulting domain model often
settles in strata (layers) where objects of similar use are grouped
together. Examples of such strata we have found are

• Capabilities: Information and functionality related to
determining and keeping track of what is possible
within the given context. In our world, this could be
stock levels, delivery obligations, pipeline
infrastructure, vessel classifications etc.

• Operational: Information and functionality related to
the performing of operational tasks. In our world, this is
tasks such as trading activities, supply operations etc.
Often, the operational tasks depend on information from
the Capabilities layer.

• Decision Support: Information and functionality
related to support the user in making decisions. In our
world this is such activities as market exposure
monitoring, risk control, supply planning. The Decision
Support layer often depends on information from the
Operational layer, and the results from this layer is often
fed back to the Operational Layer as instructions for
tasks to be performed.

Although these are three examples of responsibility layers in a
domain, other layering will occur in other domains. The

825

importance lies in the recognition of this layering, and the
resulting domain knowledge that was tacit, but now is explicit.

2. Use of the Enterprise Architecture
Using methods from a Scandinavian consultancy, we had
previously developed an Enterprise Architecture for the WSC.
Initially the architecture consisted of business, information and
functional architectures, which had been extended with matrixes
mapping elements of the different architectures together. The
information architecture defines approximately 150 core
information concepts grouped into 20 information groups, with
the dominant information concept in each group used as group
name. The functional architecture defines approximately 120
business functions grouped into 28 functional areas. Based on
this, we then had a 20x28 matrix describing the high level
information usage within the different functional areas. Similarly
we had mapped information groups vs. business processes and
function areas vs. business processes. An excerpt from such a
matrix is shown in
Table 1 below.

Table 1 Excerpt from the Enterprise Architecture. A matrix
is used to map information groups to function areas and show

which function areas create/update (●) or read (○) which
information groups.

Information Groups Information Groups
vs.
Function Areas

D
ea

l

C
ar

go

P
os

iti
on

Li
fti

ng
 P

la
n

Physical Trading ● ○

Supply Operations ○ ● ○

Supply Planning ●

Derivatives Trading ●

Fu
nc

tio
n

A
re

as

Risk Control ●

Legacy: Create/Update: ●, Read ○

2.1 Granularity Problems
During our evaluation of the COTS candidates, we attempted to
use our Enterprise Architecture as a tool to assess their ability to
support the WSC, but soon found that the initial granularity of the
information and solution architectures was too coarse.

One such example is the initial information concept Deal from the
information architecture. As we worked with the different
candidates, there were large differences in how the Deal concept
was handled in each candidate. However, since we had only one
Deal concept, the differences were not very visible in the
Enterprise Architecture. We therefore split the initial Deal
concept into several different information concepts: Physical
Deal, and Derivative Deal. With these two new concepts, the
differences between each candidate system became more visible.

Similarly we had to split other concepts (e.g. Cargo, Voyage,
Delivery) to illustrate the differences between the various
candidates. As the granularity became finer, the matrixes and
evaluations became unmanageable and incommunicable, and only
the project core team was able to navigate and understand the
vital information contained within the evaluation.

Another such example was the business function architecture.
Similarly to the information architecture, the initial architecture
had one functional area for physical trading. As we worked with
the architecture and the COTS candidates we found that they
differed significantly in their coverage of the functional area.
However, we were not able to illustrate this using the functional
architecture or the mappings to the business and information
architectures.

2.2 Lack of Firm System Boundaries
Another problem facing us during the evaluation was the lack of
firm system boundaries. Since the entire system portfolio was
being considered, we could freely move functionality between
proposed applications, so for each COTS candidate we could at
will move function areas between applications and split function
areas into new grouping of the functions according to the specific
COTS candidate coverage. The Enterprise Architecture gave us
no support in assessing the consequences of our work or deciding
if one grouping was better than any other. This was due to the
footprint resulting from each grouping across the different
architectures and mapping matrixes.

2.3 Tacit vs. Explicit Knowledge
We felt that our Enterprise Architecture contained much implicit
information based on the knowledge of the WSC architecture
team. This tacit knowledge enabled us to make decisions on the
allocation of functionality to the COTS candidate, but we were
unable to share this tacit knowledge and thereby justifying the
decisions we made. We had some experience with the use of
strategic domain-driven design techniques, and wanted to see if
this could make the information and knowledge more explicit.

3. Using Strategic Domain-Driven Design
Based on the identified weaknesses of our Enterprise
Architecture, we felt that we had to expand it to be able to use it
in the COTS evaluation. This would however require considerable
time and effort, something we did not have at this stage of the
project. Earlier we had used strategic Domain-Driven Design
techniques to analyze our existing system portfolio [5] and based
on that experience we wanted to try the same approach for this
evaluation.

3.1 Exploring the Domain
We started by drawing a simple context map, shown below in
Figure 2. This map grouped the different functional areas of the
existing applications into contexts of related functionality. Since
SAP-based functionality was not evaluated in this project, all
application areas covered by our portfolio of SAP systems were
contained in the SAP context. This was done to reduce the
complexity of the diagram. These five contexts then formed the
basis for all our analysis, and as the domain exploration and
COTS candidate evaluation progressed, we regularly came back
to these five contexts as a starting point for new forays into the
domain.

826

Figure 2: Simplified context map of application areas based

on existing solution architecture. All application areas covered
by SAP are contained in the SAP R/3 Finance and Accounting

context.
Our first task was to get more detailed knowledge of the whole
domain. We had several domain experts on different contexts
within the domain, but few could claim extensive knowledge over
several contexts. Thus, we ran a few workshops with the various
experts, exploring the domain together over a couple of hours
each time.
3.2 Using Responsibility Layers
Based on these workshops, we soon saw that the various
functional areas from the solution architecture shared certain
characteristics, and we started organizing the areas into
responsibility layers based on these characteristics. Responsibility
layers are a concept from the strategic Domain-Driven Design,
and they are very useful as a tool for managing large portions of
the domain. We found that organizing the application areas into
such layers provided us with much knowledge about the build-up
of the domain. In one such exercise shown in Figure 3 below we
rearranged some functional areas from the solution architecture
into three responsibility layers.

Supply
Planning

Lifting
Program

Capabilities

Operational

Decision
support

Physical
Trading

Supply
Operations

Derivatives
Trading

Risk Control

Risk Control And

Derivatives Trading

Physical Trading and
Supply OperationsCustomer/Supplier

C

S

Unresolved contexts
Figure 3: Responsibility layers for selected functional areas

from the Enterprise Architecture. Used to explore the
boundary between two contexts from Figure 2 (Risk Control

and Derivatives Trading context vs. Physical Trading and
Supply Operations context).

The responsibility layers gave us a clear picture of how some of
our functional areas were dependent on each other and which
areas should be kept together when deciding system boundaries.
We identified three layers, Capabilities, Operational and Decision
Support (the same three layers as in the introduction):

• Capabilities is the layer where our basic capabilities
are laid out. In Figure 3 the Lifting Program is the
functional area where all the available oil cargoes are
received from the field operators. The lists of available
cargoes are then used as basis for trading and supply
operations. There is a context boundary towards the
Terminal Operation context here, but this is not shown
in this diagram.

• Operational is the layer where the day-to-day
operational work is laid out. Trading, Supply
Operations and Supply Planning are good examples of
such functional areas.

• Decision support is where the system(s) aid the user(s)
in their decision making process. An example is Risk
Control, where various market risks are assessed, and
decisions made on the basis of this assessment. The
decisions are fed back to the operational layer as
Derivatives Trading instructions.

When we had drawn our responsibility layer, we added the
context boundaries from Figure 2. We saw that the interface
between these two contexts was a simple one-way relationship,
resulting in a non-complex interface with one-directional
information flow and no shared functionality. Hence we found
this to be a Customer/Supplier relationship (identified with C and
S above), where Physical Trading supplies Risk Control with
information necessary for Risk Control to fulfill its purpose.

We repeated this exercise several times until the application areas
were mapped out and the context relationships were defined. In
this example the application areas were in different responsibility
layers, but this was not always the case.

4. Evaluating COTS candidates
After a period of domain exploration, we had a good overview of
the various tricky aspects of our domain and felt ready to start
analyzing our COTS candidates. For each candidate, we started
out by sketching out a crude assessment of the context coverage,
the result for candidate 1 shown in Figure 4 below. Here, we saw
that this COTS candidate had a fair amount of context coverage
out-of-the-box, some possible extensions and some areas which
could not be covered by the COTS system without major
modifications.

827

Figure 4: Analysis context coverage assessment for COTS

candidate 1 showing how much is covered out of the box, what
extensions are possible, and what cannot be covered without

major modifications/extensions.

Based on earlier discussions with domain experts, elements of the
Physical Trading and Supply Operations context (related to
management of crude cargoes from the Norwegian Continental
Shelf) had been identified as a core domain. A core domain is a
context that supports the organizations core business, and it is
vital to the competitive edge that this is efficiently supported by
the processes and applications. We were particularly anxious to
see the impact of the COTS candidates in this context.

During our analysis, we found that the analysis contexts we had
previously identified were no longer correct based on the
functionality covered by each COTS candidate and other systems.
Hence, we abandoned our original analysis contexts and drew
new, presumed contexts based on the particulars of each COTS
candidate. For candidate 1, we identified several new contexts and
divided the application areas between them. The new contexts are
shown in Figure 5 below. Based on our knowledge of the COTS
candidate, we found that our needs for crude supply planning
were poorly covered, and Crude Supply was introduced as a new
context. Similarly, we found that some of our advanced risk
management needs were not covered, and introduced Advanced
Risk Management as a new context.

Figure 5: New, speculative contexts identified based on

analysis of COTS candidate 1.
The context boundary between the COTS candidate and the Crude
Supply context looked awkward to us, since we knew that a lot of
the information and functionality needed for the COTS candidate
would also be needed for the Crude Supply context. We decided
to investigate this boundary further by using responsibility layers,
and as we explored the domain we discovered that the two
speculative contexts had a shared kernel as shown in Figure 6
below.

Figure 6: Sketched UML diagram showing three domain

objects in a shared kernel between the Crude Supply Plan
context and COTS Candidate 1. The Risk Control function
area is shown as a package to show usage without cluttering

with details.
A shared kernel is a set of information and functionality that is
shared between two contexts. In this case, the shared kernel
consisted of several domain objects that were necessary in both
contexts. In our current systems, these domain objects are in the
same system, and do not constitute a context boundary. Having
system boundaries across this shared kernel would mean:

828

• Business logic would have to be developed in the Crude
Supply context to duplicate functionality of the COTS
candidate.

• The Crude Supply domain model would be dictated by
the model of the COTS candidate.

• The cost of deviating from the model would mean
construction of anti-corruption layers [4], in itself a
costly and complex task.

• Integrating the two contexts would be expensive and
demanding.

• The shared kernel could not be a service provided in one
of the contexts, as both functionality and information
were needed outwards in the different contexts.

The identification of a shared kernel between the Crude Supply
context and the COTS candidate enabled the project group to
focus the analysis efforts, investigating functional coverage and
information needs in more detail. Based on the results of this
analysis, we could state that this candidate would be unsuitable
for us.

For the other COTS candidates, we produced the same context
coverage assessment diagrams as shown in Figure 4. Based on
these diagrams, we explored the domain as best we could based
on assumed implementation contexts. This enabled us to assess
how well each candidate fit into our overall Enterprise
Architecture.

After a period of evaluating each candidate against our context
maps, the project group reached the conclusion that none of the
proposed COTS candidates fitted into our Enterprise Architecture.
Therefore the project group recommended for the steering group
that the new solution for the WSC would be based on custom
development. The steering group accepted the recommendation,
and custom development will be started in the fall of 2006.

5. Conclusion
Before we started this project, the stakeholders had a clear
expectation that the Enterprise Architecture would be of help in
evaluating the various COTS candidates. When we tried to use
our Enterprise Architecture, we found that the architecture was
not detailed enough, and that extending the architecture with more
details would make it unmanageable with the tools we had at our
disposal. The cost associated with such an effort would also be
formidable, whereas the approach outlined in this paper enabled
us to achieve good and accurate results over the course of a few
workshops of a couple of hours each.

Our experience in this project shows us that extending our
Enterprise Architecture with techniques from strategic level
Domain-Driven design are useful to:

• Facilitate domain exploration by use of a common
language. Strategic domain driven design gave us a
common language with which we could talk about the
domain. The use of clearly defined terms and concepts

enabled the different project participants to understand
and contribute to the exploration of the domain.

• Focus on the core aspects of the domain. A traditional
Enterprise Architecture puts equal emphasis on all
aspects of the domain. Using Domain-Driven design
techniques, we were able to focus on the aspects of the
domain that was vital to the task at hand and put less
emphasis on the aspects that were not relevant.

• Make tacit knowledge explicit. By using responsibility
layers and context maps, we were able to label
relationships and dependencies in our domain, thereby
making tacit knowledge from each project member
explicit and shared with the others.

• Investigate system boundaries. By using speculative
context maps based on each COTS candidate we were
better able to investigate new system boundaries and
determine whether integrating the different COTS
candidate would be expensive and challenging.

In a traditional Enterprise Architecture this would of course also
have been possible. The result would have taken considerable
more effort in time and money, and be more dependent on the
individual skills of the enterprise architects.

Acknowledgements
Our thanks go to Eric Evans for his helpful discussions with
respect to the content of this article and his mentoring skills. We
also thank Olaf Zimmerman and the ACM rehearsal staff for their
help during the preparation of this paper.

References
[1] Armour, Kaisler, Y. Liu, A big picture look at Enterprise

Architecture, IEEE IT Pro January/February 1999.

[2] Armour, Kaisler, Valivullah, Enterprise Architecting:
Critical Problems, IEEE Proceedings of the 38 Hawaii
International Conference on Systems Sciences – 2005.

[3] Domain-Driven Design, http://domaindrivendesign.org/.

[4] Evans, E., Domain-Driven Design, Tackling Complexity in
the Heart of Software, 2003, Addison-Wesley, ISBN 0-321-
12521-5.

[5] Landre E., Wesenberg H., Rønneberg H., Architectural
improvement through use of strategic level Domain-Driven
Design, OOPSLA 2006 practitioner report.

[6] TAFIM, http://www.sei.cmu.edu/str/descriptions/tafim.html/.

[7] TOGAF, http://www.opengroup.org/architecture/togaf/.

[8] John Zachman http://www.zifa.com/.

829

