
OOPSLA 2007
Domain-Driven Design BoF Session

Recorded and transcribed by
Vladimir Gitlevich

domaindrivendesign.org
vlad@domaindrivendesign.org

DDD BOF AT OOPSLA

EINAR LANDRE
We attended the “40 years of
Simula” talk today, and one of
those quotes of Kristen Nygaard,
the inventor of Simula, is that
“programming is understanding”. And
I think that the Domain-Driven
approach is bringing back the
understanding of the domain. And it
was also quoted that Simula as a
programming language was not
invented by computer scientists. It
was invented for a particular need
related to simulations, basically
how to intercept intercontinental
ballistic missiles. That was the
domain they were working in, and
they had a very hard time modeling
those things in Fortran. So then
they decided to develop a
programming language that supports
the concept of modeling of
behavior. And I think that some of
the discussions we have is how to
bring back the understanding of the
domain, that’s the key point as I
see it.

Break in tape

DEEPAK GHOSH
I want to understand on how to get
the understanding of the domain
which is enough to take me to the
next level of the design. What I
want to know from you now is, this
concept of Ubiquitous Language,
what’s the next step? What can we
do as notations that we can share
straight away with the business and
I don’t have to explain to them
that, hang on, this has nothing to
do with technology, we are just
talking in terms of boxes. So what
will be the Ubiquitous Language for
us?

ERIC EVANS
I don’t think I have a cut and
dried answer for this.

(MORE)

To me, the ubiquitous language is a
language, right, and probably it’s
most important forms would be the
spoken form, that is when you are
actually talking with your domain
experts, what language are you
talking in, and the implementation
form: is there anything in your
code that looks anything like the
way you talk to your domain
experts. And that’s where domain-
specific languages come in in my
mind, is that it is potentially a
way to pull the implementation in
the direction of our speech and the
richer forms of communication that
we have. And I agree with you that
the current crop of DSL
technologies is so technically
demanding that it disrupts the
thought process too much, and yet
the concept of DSL remains so
enticing. And in fact I’d like to
hear Martin talk a little on this
point because that’s of course
currently your main area of
interest. Obviously the internal
DSLs as you call them, where you
actually just create carefully
written, let’s say, Java code, that
starts to be so fluent ...

MARTIN FOWLER
...Fluent Interfaces is the term we
came up with as I think a kind of
analogous term from API-thinking
direction.

ERIC EVANS
Yeah. So maybe you can talk to this
point a little bit to, just kind of
from the DSLs angle.

MARTIN FOWLER
I’ve been sort of in and out trying
to grab Mr. North and get his
attention for a few milliseconds
and missed a bit of the discussion,
but fundamentally I see DSL as the
very technique that can help you
manifest that ubiquitous language,
be a communication technique.

2.

ERIC EVANS (CONT'D)

(MORE)

I think the basic DDD idea is more
fundamental in the sense that it’s
more important... you have to have
that domain-driven focus and value
because otherwise the DSLs are not
going to be interesting to you, and
you gain a lot of benefit by just
generating ubiquitous language and
working on that, which is quite
enough work on its own for most
people, it seems, and seems to be
beyond most projects these days,
but yet this is really the heart of
what the objects are about. In many
ways, DDD is just getting back to
the core of what objects were about
in the minds of the people in
Simula and Smalltalk communities in
the early days, before we all got
distracted with other stuff. And
domain-specific languages can help
enable beyond that, and it need not
be as complicated as a lot of the
stuff that the DSM people talk
about, I think that community tends
to overcomplicate things in many
ways because you can do a lot of
things much more simply, and the
fluent interfaces are a good
example of a simple way to think
about things in terms of domain-
specific languages.

ERIC EVANS
You know, there was one thing that
you reminded me. In a way, it’s
that value that is at the heart of
DDD, as you were saying, the value
of “we think first about the
understanding of the domain, and
other things flow from that”. And
so in a certain sense... and a lot
of details flow from that, but
people get hung up on a lot of
those things. Like, we can spend
the rest of our time talking about
the difference between an entity
and a value object, if we wanted
to, but in fact that’s really the
core of the matter, and then I find
that in a very close orbit around
that is the language that people
use to talk about the domain, so
that’s the ubiquitous language.

3.

MARTIN FOWLER (CONT'D)

UNKNOWN 1:
I want to say that certainly the
unified concept between all these
little islands in the archipelago
is importance of capturing a
domain. Therefore the fundamental
activity is modeling. But let's not
forget that at the end of the day
what is really important now to us
is the final customer, the person
who wants their problem solved. At
that point is where these languages
come into play.

One of the things we talked about
in this panel that happened this
afternoon, "Domain-Specific
Languages: another silver bullet?"
is, for instance, how do you
determine importance of DSLs. One
concept that was put forward was
"is there a quantum leap in
productivity", is there a quantum
leap in the quality of the things
that are produced. So the thing is
that we should not forget that
there are different components that
need to be placed. Yes, it is
important to understand the model,
and I would argue that we don’t
know yet how to do that. Just take
a look at the word “Ontologies”
that is so tightly associated with
the domains, and that opens the
whole can of worms or Pandora’s box
if you will. But let’s not forget
the person for whom in a certain
way we are working, which is
essentially the person who is
paying for our time to solve the
problem.

ERIC EVANS
Naturally, and of course one of the
things I often point out is that I
don’t think deep modeling is
necessarily the right answer to
every situation. I think that in
fact we have overused the idea of
modeling, and in the process we’ve
watered it down. So we go into
every project and say “everything
is an object”, “everything will be
modeled”, etc.

4.

(MORE)

But what a model really most useful
for? It is really most useful when
you have sort of intricacy to the
problem, and usually that intricacy
isn’t throughout, it is usually
knotted in certain hot spots. And
so one of the things that the
technology is not really good at is
allowing us to apply this kind of
deep analysis in certain areas, and
in other areas just slam some kind
of 4GL type of solution.

Fitting those two things together
unfortunately is very difficult
with the common toolset. Obviously
we have to solve customer’s
problem, in fact I would also say
that one thing to keep in mind is
that for any problem there is not a
model, there is some infinite
number of possible models, or, if
it’s not infinite, it’s extremely
large. And we are just choosing
some model that addresses the
particular problems that we are
trying to solve right here, and
that’s one reason that I am always
harping about concrete scenarios: I
don’t want to model this thing in
general, I want a small set of
concrete scenarios that tells me
what’s the hard thing that you want
to attack.

MARTIN FOWLER
...and that’s the linking to
behavior-driven stuff. The way I
look at behavior-driven design is
that there are two components, two
parts to it. One is just replacing
the word “test” with the word
“should” in your unit test which is
boooring. But then, there is
another part, which is the much
more getting into the scenarios and
stories and trying to express those
in the way that we connect to the
domain theme.

5.

ERIC EVANS (CONT'D)

(MORE)

Because in the end, the biggest
issue in software development, in
my mind, is the gap between
developers and domain people, the
“yawning crevasse of doom” as Dan
and I have talked about. And the
key to Domain-Driven Design is that
it attempts to cross that by
building a bridge through the
ubiquitous language. And everything
that’s a part of that is the key
part. And that’s what really,
really interesting, and that’s what
brings that whole notion of
scenarios. So I wanted to make a
connection through that to Behavior-
Driven Development, we talked about
it earlier on, and that to me where
the link comes in.

PETER BELL
That’s something that we noticed:
when developers first come across
it, they get so excited about the
idea of doing this ubiquitous
language, but they go and try to
learn the entire domain, and then
they’re saying “wait a minute, what
use cases do we have to deliver,
how much of the domain do we need
to understand to have some balance”
- you can model too little, but I
think it is also possible to model
too much. One of the issues with
that, though, and that’s I think
where DSL people will have
something to talk about as well, is
how do you handle model evolution,
because if you only model enough
for a use case at a time, you are
going to find that your domain
concepts are going to evolve. Let’s
say you have ten thousand
statements in a DSL or code or how
else you’re implementing that. How
do you allow your grammar and your
concepts to evolve in a way that
you then can automate the
transformation of your existing
code so you are not going to break
stuff. A specific problem we had -
we were developing a set of domain-
specific languages for generating
rich web applications.

6.

MARTIN FOWLER (CONT'D)

(MORE)

The problem was, I got to the point
that I just didn’t want to do any
more because I was finding that
every time I change the grammar of
my domain-specific language I had
to throw away thousands of
statements that I had carefully
developed because I couldn’t
automatically migrate them. So, I
think it also ties into the idea of
agility in how do you create
tooling and approaches for evolving
your grammar, whether you are
implementing DSLs or however you
handle that so that you are not
scared to model just a little bit
and you can use YAGNI and just
develop one step at a time.

ERIC EVANS
I couldn't agree more with that. As
I say again and again, you do not
understand your domain very well in
the beginning. If you are stuck
with the model that you came up
with at the beginning of your
project, you are locking in your
ignorance from that day one.
Modeling is a learning process, and
that would be a tremendously
valuable thing that the technology
developers could give us, would be
to make something easier to change.
If you use internal DSL, the
refactoring tools do give you some
of that, at least it is easier to
rename things and a few other
changes, but refactoring tools
don’t really have the concept of a
language, the kind of
transformation they got are more
conventional way of thinking, it
sort of stimulates you to think
“wow, I wonder if there are going
to be refactorings that might be
more language-like?”.

MARTIN FOWLER
But it’s also about how you build
the pieces. At the moment we are
still in the situation where most
people don’t know how to build DSLs
very well because the information
isn’t out there.

7.

PETER BELL (CONT'D)

(MORE)

Just as people have struggled with
a lot of domain-driven development
stuff because Eric’s book wasn’t
out there and there wasn’t very
much advice as to how to do that.

DAN NORTH
Ubiquitous is a really dangerous
word, I think, and it is in danger
of becoming massively overused,
like using a golden hammer to beat
people with. The big thing that
Domain-Driven Design gave me is
this idea, at least the idea of the
ubiquitous language, gave me was
that it allowed me to articulate
what I was trying to do with BDD.

What I am trying to do is create a
language that describes how
software gets written, trying to
create a way of describing
scenarios, and scenarios
themselves, the words that I use to
describe scenarios are a domain
language of the domain of writing
software. For instance if I am
describing the behavior of a web
app I immediately got two domains I
am describing. I am describing the
behavior of actually operating a
browser, so selecting things,
entering text, clicking on things,
and above that the domain of the
problem I want to solve. I want to
log in as Bob. Logging in as Bob
involves coming up with a sequence
of web-type instructions. If I have
those two domains, I understand
that those domains are related. If
I then want to replace my web app
with a rich UI app, I still have
the domain idea, the ubiquitous
idea of logging in as Bob, it just
now means that I do it though a
different way, I am still
expressing the same intent.

8.

MARTIN FOWLER (CONT'D)

(MORE)

And when you get this type of web
driver type languages, if your
language is “here are thirty things
you can do with the browser”, and
now we want to change the things we
can do, and now I have to go
through and change all of our
scripts - doh! If instead you say
“these are the kind of the atomic
things I can do with the browser”,
now I can start tracing the
abstractions over those things. So
entering a name and address is
quite a common operation. If I have
entering a name and address as a
thing I can do, and that enters my
vocabulary, then the way I
implement that is the beginning of
regular software development now,
the beginning of good abstractions.

ERIC EVANS
Yeah, but you are talking about
building abstractions out of other
abstractions...

DAN NORTH
...language abstractions out of a
language...

ERIC EVANS
...which is so key to modeling
processing. It is one of the
weaknesses of the external DSL
techniques that have been put out
so far. One of the nice things
about the internal DSL is that you
have all of the usual abstraction
tools of the language, so if I
create this kind of internal DSL, I
can easily use terms in that to
define new terms, so building
abstractions out of other
abstractions, including...

DAN NORTH
...internal DSL. It’s lovely to do.
There’s a friend of mine, Simon
Stewart, has written a thing called
“Web Driver”. It’s a really simple
Java interface that describes how
you drive a Web browser. And using
implementation of that will drive
Internet Explorer ...

9.

DAN NORTH (CONT'D)

(MORE)

headless mode. You can run all of
your functional browser tests
through this Java thing, you just
code it. But then, because it’s
just Java, it’s an internal DSL. I
can create abstractions over that,
and I can put those things together
as scenarios. And it’s so
expressive when you are looking at
it, and you can refactor it. I can
pull out big lumps of it and turn
it into something else. Wow, we are
suddenly getting refactoring at a
language intent level. And that to
me is ... language ubiquity. If we
mean the same things by the same
things.

There is something I wanted to pick
up on what you said earlier. It’s
not just doing the same things
better, it’s doing different
things. You get this emerging
behavior, people stop being able to
talk very differently.

DEEPAK GHOSH
I think one of the things that
stood out completely for me in
Domain-Driven Design is human-to-
human interaction. It enabled human-
to-human interaction, which usually
reduces as I see people more and
more going into their own silos.
The way I practice Domain-Driven
Design is on the white board. So I
white board it with people. Unless
I want to interact with people who
are the stakeholders and with their
own agendas... it enables the human
interaction, and that’s why it
works. I am still far away from DSL
and all that stuff. I think what is
working for me is this
collaboration that it enables
automatically. But then, I have
some limitations that I found. This
limitations are around... when I
use DDD and these modeling
technique, I can figure out the key
entities and the surrounding
entities of the business system.

10.

DAN NORTH (CONT'D)

(MORE)

And it also helps me to understand
the associations between them, how
these entities collaborate. But the
business process still seems to be
on the dark side. I could not
excavate the business process very
clearly.

MARTIN FOWLER
Well how long have you been
modeling it?

DEEPAK GHOSH
With the Domain-Driven Design? It’s
been a year..

MARTIN FOWLER
After a year I’d think I’d begin to
understand something. This is not a
short process, this is not going
and building a model in a few
months. Eric talks a lot about how
the key insights come a year, a
year and a half into building the
thing. This is something you have
to evolve over time. It is really
important to understand that,
because I think people sometimes
get a sense that “oh, I can just go
in and model and quickly understand
and run with that model. And
“quick” is not a part of this
process as far as I can tell.

DAN NORTH
You may find you start introducing
a different language to describe
the interactions between these
characters in your system. I do a
lot in investment banks, so I have
things like a trade and portfolio,
and this kind of stuff. But you
also then have a settlement
process. And when you start looking
at the life cycle of a trade, what
happens to it, you introduce a
whole new vocabulary. And it is
interesting to a whole different
bunch of people. Because a trader
doesn’t care. A trader goes
“capture the data - bang! - I’ve
just made a bunch of money. Next
phone call”.

11.

DEEPAK GHOSH (CONT'D)

(MORE)

There is a bunch of very serious
legal people who do care. And for
them... this is the thing again,
this is the danger of ubiquity:
there is number of languages, there
is a number of models that will
overlay each other. And yet,
absolutely, your characters need to
understand your domain, the static
domain. Then you need to see what
happens to them, how they interact.
And that may well introduce a whole
other domain. And that’s ok, I
think.

ERIC EVANS
I think that the point you are both
making is that these dynamic
aspects, they add into this model.
I mean, I would say that I view
that as one model, the static and
dynamic parts are woven together. A
rich language describes those two
things fluidly in a way that you
become less aware, I think, or less
conscious of what’s dynamic and
static. But I just wanted to follow
up on the point that Dan made about
the multiple models, because I
realized after a couple of years
that a lot of the contents in
chapter 14 probably should have
been in chapter 2. Nobody ever gets
to chapter 14. So they read the
chapter 2 about ubiquitous
language, but they never get to
chapter 14, where it talks about
how there will be multiple models
on the project, which carry
different languages with them, and
the importance of recognizing them
and bounding them and clearly
identifying their relationships. I
think that that’s one of those
things that, as Dan was saying, as
the term “ubiquitous language”
becomes ubiquitous, I hope that
this idea of bounded context of a
model starts to travel along with
that term, so that people realize
that any kind of set of concepts
exists within some defined context.

12.

DAN NORTH (CONT'D)

DAN NORTH
...not necessarily. An example I
use is booking a holiday. Now, when
I book a holiday, I think of a
holiday, of vacation as, like, a
beach, tequila, that kind of stuff.
When my HR department things of
booking a holiday, they are
thinking of People Soft, the whole
business process they do. I don’t
even want to know what that world
is like, I necessarily want those
to be different domains.

ERIC EVANS
Well, they are different models of
the same domain.

DAN NORTH
Yes, yes, totally. So I just said
that the concept of holiday, a
vacation is shared.

ERIC EVANS
...and if you mix them together you
will have a mess, but if you have
these two as distinct models within
distinct contexts, then...

MARTIN FOWLER
...and that’s why the global object
model, global data model is doomed.

ERIC EVANS
Yes.

UNKNOWN 1
So there is this very, very tough
problem that I have still unsolved
and I haven’t seen practical
solutions to it, which is a problem
of interoperability among models.
You can live within the “comfort
zone”, where you develop your own
model, you see your versions, and
everybody means the same when they
talk about the same concept, but
then you get out of the comfort
zone and you get people who mean
completely different things, and
guess what? In any organization you
can have many different software
products.

13.

(MORE)

You have invested money in them,
you have invested money in a
workflow system, you have invested
money into an ERP system, and you
want the workflow system to send
information to the ERP system. How
do you solve it?

ERIC EVANS
Yeah, this is exactly the context
map problem. Those two systems
speak different languages, they are
based on different conceptual
models, whether they have been
explicitly modeled or not, they are
based on different conceptual
models. So when you send a message
from one to the other, that message
has to be translated. And I think
we have to just say there is just
no such thing as something that
means the same to everybody. And if
just let go of that idea, and
concentrate on what is the context
within which I can interpret this
language, and then I have some
translations between this language
and whatever other language I need
to translate into, then things
return to sanity.

MARTIN FOWLER
Makes me think actually of a
fascinating conversation a while
ago with... I won’t mention his
name... one of the leading SOA
authors... he was talking about the
importance of modeling the domain,
getting every and all of the
inconsistencies ironed out so you
get a single consistent map for the
whole domain before you go and
begin your SOA work. And it struck
me that there are two very
different attitudes here. There is
one attitude that says, in order to
handle the world, we must simplify
and make... not necessarily
simplify, but make everything
coherent and logical.

14.

UNKNOWN 1 (CONT'D)

(MORE)

And there is another view of the
world, which is we can’t make
everything coherent and logical
because the world isn’t that way,
we just need to figure out how to
cope with incoherent and illogical
world. I am going to be on the
panel tomorrow about silver bullets
and things . What strikes me is
that one of the best allies that
the werewolf has is the desire for
the silver bullet to make
everything coherent and logical,
because that causes even more
trouble, one of the best things the
werewolf has.

DAN NORTH
...something I’ve noticed ... in
the last couple of years is the
gaps between the contexts are
themselves a context. So in other
words you get people who are
experts at the translation you are
describing, and I go to those
people because I know they know far
more about how to make “a trade”
over here mean the same as “a
booked deal” over here. And I don’t
understand the subtleties and the
nuances and the business rules, and
they spent their life knowing that
stuff. So there is like a really
deep domain of being good at the
cracks. And that itself is an
emergent vocabulary. ... They don’t
necessarily need to know what you
are going to do with that
information, they need to know that
this translates to that, and that
you find it useful.

EINAR LANDRE
...we were able to say “divide and
conquer” and isolate, that defines
the major contexts, and also the
interfaces between the contexts ...
can be domains in themselves. Of
course, they are so thick that
there is too much going on, and
there are issues regarding how to
place the boundaries, so you make
the interfaces as thin as
practically possible.

15.

MARTIN FOWLER (CONT'D)

(MORE)

We put together two experience
reports published at OOPSLA last
year discussing some of the
experiences we had with
architecting an information system
we had build and also how we
applied the same technique for ...
evaluation to find out how these
models in that package fit to the
environment we should deploy it
into, and it basically rules out
... all packages because it didn’t
fit. So that’s the context mapping,
but we probably didn’t say that.
It’s the hidden secret of Eric’s
book...

ERIC EVANS
...hidden on page 400 or something.

CHRISTOPHER O’CONNOR
I really like the idea of that man
in the middle [Einar] because I
think I heard a lot of discussion
here at the SOA workshop and other
places that are talking about
getting enough semantics ... and
that’s a part of the context, so if
you have two different contexts and
you have semantics associated with
both of them, that’s a really
important concept that you have
somewhere that’s in between that
somebody that knows enough about
both to feel comfortable getting in
there, and that’s another aspect to
keep track of ... [some gibberish I
can’t make sense of]

DAN NORTH
I think there is a really dangerous
vendor anti-pattern in that space.
So I will go back to Martin’s
lovely metaphor earlier in the year
with ferrymen and bridge builders
... we got this gap and we got
geeks on one side and business
people on the other side and we
wanna get these people talking the
same language. You can have a
ferryman going across so you can
say “we have to translate”, we have
to translate between these domains.
You know what?

16.

EINAR LANDRE (CONT'D)

(MORE)

We call it “enterprise service
bus”, I’ll sell you one. It costs a
small fortune. And that’s what it
does, it does translation. All we
can say, we want to make the
problem of translation go away by
collaborating and getting these
people speaking in a shared
understanding of one another’s
context, and kind of making the gap
really, really really tiny. So
there are kind of two ways to solve
that...

ERIC EVANS
...there is pragmatic balancing of
those things. If you say “oh well,
that’s just another context” every
time anyone disagrees about
anything you get this
fragmentation, pretty soon you
can’t say a complete sentence
without switching languages in the
middle. And on the other extreme
you have the enterprise model
attempt to force Esperanto onto the
world. So I think there is
pragmatic middle ground where you
say, do we have a big win out of
making these people speak one
language; do we have a practical
possibility or are these people
never going to? Because it takes a
lot of work to maintain a
ubiquitous language, so you are
going to declare your context
boundary to encompass both of these
groups. It means they have to put
in the work to agree on a single
language and then maintain it as it
evolves, and that’s a lot of
overhead. So I think this is a
pragmatic choice to be made,
depending on how much value there
is and how much difficulties there
is.

17.

DAN NORTH (CONT'D)

DAN NORTH
...I am not trying to suggest we
bring them together and give them a
common language, just that they
understand enough of each other’s
domain, enough of each other’s
language to understand what happens
at the edges, but they don’t need
to know anything other than that.

ERIC EVANS
...Although I am big on
constraining that knowledge
implicit in a piece of software,
like I want my objects to be ultra-
specialised, I want to have these
distinct contexts and within them
to have only one model , and that
model is very de-coupled from other
models in other contexts and so on,
but I don’t think that way at all
about the people involved. I mean I
want the person to know as much
about the whole situation as
possible. There is no need for
people to respect the boundaries of
a bounded context in the knowledge
that they acquire. I mean, we are
way to compartmentalized as people.
We have to keep reminding ourselves
that my boundaries should be much
broader than the boundaries of the
software I am writing. I need to
understand the context within which
this software operates, and that’s
much bigger than the software. And
I think it’s weird, I mean saying
it out loud it sounds ridiculous,
but I’ve observed that people
really do make decisions about what
knowledge they should acquire very
much in alignment with the
knowledge that will be in their
software. For example, one of the
strict things that we do in agile
is we don’t over-engineer, we don’t
try to accommodate cases beyond the
ones we’ve got. But people extend
that to saying “I shouldn’t
understand those other cases, I
shouldn’t understand the business
beyond these little cases, these
little stories”.

18.

(MORE)

I couldn’t disagree more, I think
in order to understand a story,
really understand a story you are
working on right now, you need to
know a lot about environment that
this story is happening in. So I
think people should know as much as
possible...

MARTIN FOWLER
Encapsulation is for objects, not
for people :-) I have to head
off...

ERIC EVANS
I’m glad you could join us.

UNKNOWN 2
...in many fields the domain
experts will not speak any
programming language. So if a DSL
is to be a language for modeling
the domain expert’s view of the
world, it mustn’t be a programming
language but an analytic language,
and evaluation of this language
means to project from analysis to
procedure, to operational logic,
starting with a language that has a
declarative logic known to your
domain experts and that exists
independently from your software.

ERIC EVANS
Exists independently from the
software? Can you give an example?

UNKNOWN 2
Yeah, sure. An evolutionary
biologist tells me how the
population he wants to study looks
like in terms of how many genes are
involved and so on, I can make him
a computer simulation, and if we
agree about aspects of this model,
which he can vary in terms of ...

19.

ERIC EVANS (CONT'D)

(MORE)

how many genes are involved,.., if
we can agree on this sufficiently
narrow descriptive language for
specializing his scientific theory,
I can build a meta-program that
will produce a computational
simulation for every scenario he is
interested in, and at the same time
he has the terms that already have
a definite meaning in his
scientific community, but he has no
idea about any kind of software, or
at least he doesn’t need to have.

ERIC EVANS
So, I do agree that domain experts
are not likely to learn a
programming language, and this is
one of the things that I think, I
think that the idea that wish that
the purposes of a domain-specific
language will ultimately be that
domain experts could write their
own programs, I think that’s a red
herring. No, I am agreeing with
you, I agree that the goal is not
to make a programming language that
domain experts understand, or let’s
say that they can write, anyway. I
don’t think I entirely followed the
whole thing you are saying...

UNKNOWN 2
...let me try it this way. If I
think about this kind of analytic
language, I would rather think
about profiles about set calculus
or algebra than profiles for UML.
At least in such mathematical
disciplines as engineering or
biology the people are absolutely
able to give you sufficiently
precise and formal model of the
scenario they are interested in to
allow the automatic production of a
computer program they want to
address some of the questions they
ask. Of course you have to know
what kind of questions they’re
asking...

ERIC EVANS
How is that not a programming
language then?

20.

UNKNOWN 2 (CONT'D)

(MORE)

If you state something that fully
specifies a program, then it’s a
programming language.

UNKNOWN 2
It doesn’t fully specify. Maybe
something that is more commonly
known. Say these guys describe an
engine, a combustion engine...

PETER BELL
To me the real distinction with
this is that when you are working
with business experts often, as we
found out, you don’t really know
what you are doing. They don’t
really know how to say what they
want. Perhaps the distinction is
that in certain scientific
communities...

Break for tape change

DAN NORTH
... if actually the problem I’ve
got is to have some really useful
defaults in a bunch of fields on
this green screen, and that would
make me three times as productive,
then don’t re-write the entire look
[??] but give me a super-duper
swanky web app thing.

ERIC EVANS
Right. Although that last bit there
is a good example of what I meant
when I said that not every
situation calls for DDD. If what
you want to do is to streamline
data entry, you go out there and do
more of a usability study and look
at the problems that the data entry
people are encountering. They are
probably not deep domain problems,
they are little things like entry
fields aren’t in the right order,
or this thing can be calculated
from these two fields, and little
stuff which...

DAN NORTH
...you say they are not domain
problems, I say they are, I think
they are symptomatic of poor...

21.

ERIC EVANS (CONT'D)

(MORE)

If the guys designing the system
had realized these two things are
actually the same thing, you would
have got [??]...

ERIC EVANS
That’s true, and of course my bias
is towards seeing everything as a
domain problem [laughter], so I am
probably trying here to adjust my
own bias.

I want to go back for a second to
this politics question because I
honestly agree with him when he
said you are just not going to get
the politics out of this. What we
are doing goes too close to the
bone of how people’s businesses
work, and therefore we are just in
the middle, but on the other hand
if you can’t avoid something, then
maybe you can face it head on and
manage it. That’s another thing
about the context mapping. I would
encourage people to take a look at
that chapter 14, even if they have
to skip over the 200 pages before
that which they haven’t read
because it really talks about,
like, there are models within
contexts but what are the
relationships, because a lot of
that revolves around politics. Just
to take one example: I see a fairly
common occurrence of a team that
says, well, ok, to do what we need
to do for out little bit would be
very nice to have this additional
feature over here. So let’s go talk
to these guys. “We would like this
additional feature” - “Oh, that
makes a world of sense, yeah I can
see why you need it, well, we’ll
make it for you”. And then they
proceed and they write their stuff,
and at some point, boom! - their
project is delayed, because these
people didn’t do that. And why
didn’t they do that?

22.

DAN NORTH (CONT'D)

(MORE)

Because they had good intentions
and they wanted to help, they
wanted to make that feature, but
because of the political dynamics
of the whole relationship was not
such that it was their primary
focus, and they didn’t get around
to it, and not by any kind of in-
fighting, in fact, these guys
actually wanted to. And they go
back and they say “you haven’t done
it!”, and they say “oh, we feel
terrible! Ok, we’ll get to that, we
are going to get to it right
away!”, and then they still don’t
do that, and they just feel
guiltier and guiltier and guiltier,
but that doesn’t make it get done.
What makes it get done is either
you change the structure of things
politically in terms of who they
report to, what their assignments
are, or, if that’s not going to
happen, then you change the
relationship, the context, say “we
will do this ourselves, within our
own model, it won’t be as good a
solution, theoretically, but it
will actually happen”. And if you
look at the realistic lay of the
land, you can make better decisions
about stuff like that.

DAN NORTH
The word “politically” has a bunch
of negative baggage with it. There
is one other thing I’ve seen,
really just makes me smile with
domain-driven design, and that is
particularly my current plan is
investment bank, we are doing the
service tier ... but we are trying
to do it by talking to the guys
using the service tier and engaging
them... is in trying to get a
shared domain, in trying to
understand what this language looks
like, we’ve uncovered loads and
loads of bogus received wisdom, a
bunch of waste, extra effort stuff
in their existing process.

23.

ERIC EVANS (CONT'D)

(MORE)

It’s not a complicated system, it’s
capturing trade data and pushing it
through to some system that’s going
to do some settlements, but there
are lots of little nuances to it.
And it was when we were trying to
get a shared vocabulary to describe
these nuances, we were like “but
why is it even there??” - that’s
just a huge piece of work we don’t
have to do. And as you were saying
about silos - the person confines
themselves with they work with in
their little silo world, and in
fact this is how they used to
develop software: the manager would
know how the whole thing was going
to fit together, like “Eric, you
are going to work on these four
classes” - “Ok, I’ll just go and
type that, shall I”, and so
everyone was in these silos, there
was no communication across the
silos. So we came in and started to
ask a bunch of dumb questions, like
“what does that mean?”, this
vocabulary si changing form bit to
bit, how do these things work? And
a bunch of duplication just fell
away, it was joyful. Literally, we
deleted about 30% of this code base
in the last four months, and it
works, it does more quicker...

ERIC EVANS
Deletion is so satisfying! That’s
great!

EINAR LANDRE
Basically what you hit on there is
to identify the problem, and very
often, there is one old
architecting heuristics that you
should never accept a requirement
as valid up-front. And the guy who
said it was the chief designer of
the F-16 aircraft, because the US
Airforce, they requested a Mac-3
fighter, and that was impossible to
build within a reasonable cost. And
he went back to the generals and
asked them, “why do you need a Mac-
3 aircraft??” “We want to escape
from airfight”.

24.

DAN NORTH (CONT'D)

(MORE)

Ok, that boils it down to thrust
versus weight ratio, which is an
engineering problem we can solve.
We need a light aircraft with a
really big engine. And that was
that. And you need, you have that
type of process where something is
stated. And even though a domain
expert states that - airforce
generals probably have a good idea
of what they want from their
aircraft - they were not able to
articulate what they really wanted.

DAN NORTH
Yes, rather than giving me a list
of features I have to deliver, tell
me a list of problems I have to
solve, because maybe between us we
can come up with a really clever
way of doing it. I had a system
recently, or rather one of my
clients had a system recently where
every couple of days it would
crash. And it has some memory
instability, and every couple of
days it would crash, and it was a
huge issue because it was a live
trading system supporting very
expensive very unhappy traders. So
what he did was he rang an
operations desk and he said, every
night around 2 a.m. you should
restart the system [?]. And they
said, sure!

Problem solved in a stroke because
it always lasted longer than a day.
So now the system’s stable again,
now the developers can work out
what is wrong, like do memory
profiling. So the outcome was to
stop that thing crashing rather
than the traders coming out
screaming at the developers “you
have to fix it NOW!”, and he solved
the right problem.

25.

EINAR LANDRE (CONT'D)

UNKNOWN 2
This raises question how come
domain-specific model capture what
he told you about the problem he
wants to solve, but does it capture
what you design to solve his
problems. Is it in the problem
domain, does it mean you need a
formal transformation into the
solution domain, or if your domain
model is the model of your
solution.

ERIC EVANS
I know that people make that
distinction and talk about the
model and the solution domain and
the problem domain. I think we
should throw that out. Honestly, I
think we should have one model, and
that model would be harder to find
because we want one that describes
the problem well and works well as
a solution. In other words, I want
it all, and I want it all in one.
And it’s hard to find, but that’s
where the big gain comes from,
because if you have two, and you
have to translate between the two,
how do you ever know that you
actually did it right, how do you
know that your thing really means
the same thing as his thing.

UNKNOWN 2
Actually, I would agree that we
need one model, but everything that
happens after having formulated the
model should be formal and
automatic.

ERIC EVANS
Yes, that’s the idea...

UNKNOWN 2
The idea that the problem model
somehow supported transformation to
a solution model ... but the
question is, do we have a rich
model that allows us to define our
solution of the problem as a part
of the model? Or is this a part of
the transformation that is defined
in the meta-model?

26.

ERIC EVANS
Yeah... and you are describing, I
think, a kind of elegant and very
complete solution which for most
projects right now isn’t within
reach. But there are not as
elegant, not as correct, but
nonetheless very useful ways of
writing, let’s say, a Java program
that really does express faithfully
a set of concepts which we have
expressed in richer formats like
conversations in English, for
example, or more rigorous things,
so I think that right now this
situation we have, we have to deal
with expressing our ubiquitous
language in ordinary programming
languages. But that’s what we would
really like from these new
technologies, of course. By the
way, I think one of the keys is
that we have to get there in steps.
I have seen attempts to do what you
just described. And they haven’t
worked out. And I think part of the
reason is that we are trying to
leap to far at once. Even with some
of the things the MDSD people came
up with, which are somewhat more
incremental. But yet, they make me
give up too much. I look at some of
these things and I say “this is
really nice, I would like to have
this capability, and all you are
asking me to give up in exchange to
this capability is EVERYTHING that
I’ve ever made work in the past.
Everything that I know actually I
can trust I have to give up in
order to have this thing you have
given me”. And so if we can have
the tool people think about, how
can I add without taking away so
much, that would really be helpful,
I think for them to have this
mentality of saying “these guys
have a lot of tools they’ve learnt
to use and make work...”

DEEPAK GHOSH
I have another horror story,
probably the last one to share.

27.

(MORE)

That is, again, on domain knowledge
excavation. There are two types of
difficulties that I’ve faced, I
keep on facing. One is - the person
doesn’t speak up. There could be
various reasons why he is not
speaking out the right things, and
the next, which is more horrible
story, is that the domain has got
embedded into a software system, so
it is enclosed there, it is not in
people’s heads any more, because
people who were there at the time,
they have left the company. So when
I ask for a requirement, they say
“go to the SQL database and start
firing queries so you find the
rules”. I say - HELLO, I cannot
excavate. So I think I fall short
of one chapter that you should be
writing now, which is domain
excavation, domain knowledge
excavation.

ERIC EVANS
That’s a good one. I look forward
to your first draft of that. And
I’m kind of serious about that. I
think that other people starting to
write about Domain-Driven Design
now, other people beside me, and
that’s good because it takes a
community of people to make
something like this, not just me.

By the way, I wanted to introduce
Dan North, kind of little late now,
but he is Behavior-Driven
Development guy, and remember I was
saying there were all these drivens
and different domains, so that’s
one of them. It was really good to
have him in this conversation.

DAN NORTH
Quick plug: I am doing a Behavior-
Driven Development tutorial
tomorrow afternoon. It says with
JBehave, but it’s mostly about BDD
and a little bit about JBehave, and
probably some stuff in Ruby as
well.

28.

DEEPAK GHOSH (CONT'D)

(MORE)

The reason Eric and I were talking
quite a lot is, like I said, Domain-
Driven Design has given me a way to
articulate what I am trying to do.
I had this huge realization. I was
trying to coach TDD and I was
having real problems with it. I’m a
sort of neuro-linguistic kind of
behavioral psychology type person,
I like all that stuff as well, how
people think. And I though I change
the words, so I changed the words
and started talking about software
behavior, saying “we are not
writing tests, we are writing
examples of behavior, we are
writing enough examples of
behavior, and then write enough
software that the examples of
behavior work. And then I had this
kind of ah-ha moment, with a guy
Chris Matt, he is a business
analyst, where we realized that you
can use this behavior-driven kind
of approach, so you capture stories
and features at a business level,
or stakeholder level, and now I can
capture requirements in terms of
behavior, and I could automate
those, and then suddenly I am
moving into automated acceptance
testing space, and that’s quite
exciting. And my model was that
there was this continuum of
behavior, from the kind of code
object interacting level right up
to domain application enterprise
interaction, and there was this
continuum, and all you have to do
is stand back far enough and
squint. And it turns out I was
wrong. What I realized is that it’s
not a continuum, it’s a bunch of
kind of shells if you like of
different domains, and they flow
one into the other, they translate
one to the other, or they
encapsulate one another. The
example I was using earlier on is
the business objective is to log
in, is to identify myself to a
system. The application
interactions may be a bunch of
clicking and typing things in.

29.

DAN NORTH (CONT'D)

(MORE)

The code level behavior may be a
whole bunch of stuff altogether. So
I’ve got three levels of
description of behavior to get
stuff done. Now, without the
vocabulary of DDD, how can I
possibly start to explain that? So
it’s helped me to articulate what I
am trying to do. And... yeah,
thanks!

30.

DAN NORTH (CONT'D)

