
III
Refactoring

Toward Deeper
Insight

evans_pt03.qxd 7/30/2003 8:19 PM Page 187

Part II of this book laid a foundation for maintaining the correspon-
dence between model and implementation. Using a proven set of
basic building blocks along with consistent language brings some
sanity to the development effort.

Of course, the real challenge is to actually find an incisive model,
one that captures subtle concerns of the domain experts and can drive a
practical design. Ultimately, we hope to develop a model that captures a
deep understanding of the domain. This should make the software
more in tune with the way the domain experts think and more respon-
sive to the user’s needs. This part of the book will clarify that goal, de-
scribe the process by which it can be approached, and explain some
design principles and patterns to apply to make the design accommo-
date the needs of the application as well as the developers themselves.

Success developing useful models comes down to three points.

1. Sophisticated domain models are achievable and worth the trouble.

2. They are seldom developed except through an iterative process
of refactoring, including close involvement of the domain ex-
perts with developers interested in learning about the domain.

3. They may call for sophisticated design skills to implement and to
use effectively.

Levels of Refactoring
Refactoring is the redesign of software in ways that do not change its
functionality. Rather than making elaborate up-front design deci-
sions, developers take code through a continuous series of small, dis-
crete design changes, each leaving existing functionality unchanged
while making the design more flexible or easier to understand. A
suite of automated unit tests allows relatively safe experimentation
with the code. The process frees the developers from the need to
look far ahead.

But nearly all the literature on how to refactor focuses on me-
chanical changes to the code that make it easier to read or to enhance
at a very detailed level. The approach of “refactoring to patterns”1

188 PA RT I I I

1. Patterns as targets for refactoring were briefly mentioned in Gamma et al. (1995).
Joshua Kerievsky has developed refactoring to patterns into a more mature and useful
form (Kerievsky 2003).

evans_pt03.qxd 7/30/2003 8:19 PM Page 188

can give a higher-level target to the refactoring process when a devel-
oper recognizes an opportunity to apply an established design pat-
tern. Still, it is a primarily technical view of the quality of a design.

The refactorings that have the greatest impact on the viability of
the system are those motivated by new insights into the domain or
those that clarify the model’s expression through the code. This type
of refactoring does not in any way replace the refactorings to design
patterns or the micro-refactorings, which should proceed continu-
ously. It superimposes another level: refactoring to a deeper model.
Executing a refactoring based on domain insight often involves a se-
ries of micro-refactorings, but the motivation is not just the state of
the code. Rather, the micro-refactorings provide convenient units of
change toward a more insightful model. The goal is that not only can
a developer understand what the code does; he or she can also under-
stand why it does what it does and can relate that to the ongoing
communication with the domain experts.

The catalog in Refactoring (Fowler 1999) covers most of the
micro-refactorings that come up regularly. Each is motivated prima-
rily by some problem that can be observed in the code itself. By con-
trast, domain models are transformed in such a range of ways as new
insights emerge that a comprehensive catalog would be impossible to
compile.

Modeling is as inherently unstructured as any exploration. Refac-
toring to deeper insight should follow wherever learning and deep
thinking lead. Published collections of successful models can be
helpful, as discussed in Chapter 11, but we shouldn’t get sidetracked
trying to reduce domain modeling to a cookbook or a toolkit. Model-
ing and design call for creativity. The next six chapters will suggest
some specific approaches to thinking about improving a domain
model, along with the design that brings it to life.

Deep Models
The traditional way of explaining object analysis involves identifying
nouns and verbs in the requirements documents and using them as
the initial objects and methods. This explanation is recognized as an
oversimplification that can be useful for teaching object modeling to

189R E FA C T O R I N G T O WA R D D E E P E R I N S I G H T

evans_pt03.qxd 7/30/2003 8:19 PM Page 189

beginners. The truth is, though, that initial models usually are naive
and superficial, based on shallow knowledge.

For example, I once worked on a shipping application for which
my initial idea of an object model involved ships and containers.
Ships moved from place to place. Containers were associated and
disassociated through load and unload operations. That is an accu-
rate description of some physical shipping activities. It does not turn
out to be a very useful model for shipping business software.

Eventually, after months working with shipping experts through
many iterations, we evolved a quite different model. It was less obvi-
ous to a layperson, but much more relevant to the experts. It was re-
focused on the business of delivering cargo.

The ships were still there, but abstracted in the form of a “vessel
voyage,” a particular trip scheduled for a ship, train, or other carrier.
The ship itself was secondary, and could be substituted at the last
minute for maintenance or a slipping schedule, while the vessel voy-
age went on as planned. The shipping container all but disappeared
from the model. It did emerge in a cargo-handling application in a
different, very complex form, but in the context of the original appli-
cation, the container was an operational detail. The physical move-
ment of the cargo took a back seat to the transfers of legal
responsibility for that cargo. Less obvious objects, such as the “bill of
lading,” came to the fore.

Whenever new object modelers showed up on the project, what
was their first suggestion? The missing classes: ship and container.
They were smart people. They just hadn’t gone through the processes
of discovery.

A deep model provides a lucid expression of the primary concerns
of the domain experts and their most relevant knowledge while it
sloughs off the superficial aspects of the domain. This definition
doesn’t mention abstraction. A deep model usually has abstract ele-
ments, but it may well have concrete elements where those cut to the
heart of the problem.

Versatility, simplicity, and explanatory power come from a model
that is truly in tune with the domain. One feature such models almost
always have is a simple, though possibly abstract, language that the
business experts like to use.

190 PA RT I I I

evans_pt03.qxd 7/30/2003 8:19 PM Page 190

Deep Model/Supple Design
In a process of constant refactoring, the design itself needs to support
change. Chapter 10 looks at ways to make a design easy to work with,
both for those changing it and for those integrating it with other
parts of the system.

Certain characteristics of a design make it easier to change and
use. They are not complicated, but they are challenging. “Supple de-
sign” and ways to approach it are the subjects of Chapter 10.

One bit of luck is that the very act of transforming the model and
code again and again—if each change reflects new understanding—
can bring about flexibility at just the points where change is most
needed, along with easy ways of doing the common things. A well-
worn glove becomes supple at the points where the fingers bend,
while other parts are stiff and protective. So although there is a lot of
trial and error involved in this approach to modeling and design, the
changes can actually become easier to make, and the repeated
changes actually move us toward a supple design.

In addition to facilitating change, a supple design contributes to
the refinement of the model itself. A MODEL-DRIVEN DESIGN stands
on two legs. A deep model makes possible an expressive design. At
the same time, a design can actually feed insight into the model dis-
covery process when it has the flexibility to let a developer experi-
ment and the clarity to show a developer what is happening. This half
of the feedback loop is essential, because the model we are looking
for is not just a nice set of ideas: it is the foundation of the system.

The Discovery Process
To create a design really fitted to the problem at hand, you must first
have a model that captures the central relevant concepts of the do-
main. Actively searching for these concepts and bringing them into
the design is the subject of Chapter 9, “Making Implicit Concepts
Explicit.”

Because of the close relationship between model and design, the
modeling process comes to a halt when the code is hard to refactor.
Chapter 10, “Supple Design,” discusses how to write software for soft-
ware developers, not least yourself, so that it is productive to extend

191R E FA C T O R I N G T O WA R D D E E P E R I N S I G H T

evans_pt03.qxd 7/30/2003 8:19 PM Page 191

and change. This effort goes hand in hand with further refinements to
the model. It often entails more advanced design techniques and more
rigor in model definitions.

You will usually depend on creativity and trial and error to find
good ways to model the concepts you discover, but sometimes some-
one has laid down a pattern you can follow. Chapters 11 and 12 dis-
cuss the application of “analysis patterns” and “design patterns.”
Such patterns are not ready-made solutions, but they feed your
knowledge crunching process and narrow your search.

But I’ll start Part III with the most exciting event in domain-
driven design. Sometimes, when the stage is set with a MODEL-
DRIVEN DESIGN and explicit concepts, you have a breakthrough. An
opportunity opens up to transform your software into something
more expressive and versatile than you expected. This can mean new
features or it can just mean the replacement of a big chunk of rigid
code with a simple, flexible expression of a deeper model. Although
such breakthroughs don’t come along every day, they are so valuable
that when they do happen, the opportunity needs to be recognized
and grasped.

Chapter 8 tells the true story of a project on which a process of
refactoring toward deeper insight led to a breakthrough. This experi-
ence is not something you can plan for. Nonetheless, it provides a
good context for thinking about domain refactoring.

192 PA RT I I I

evans_pt03.qxd 7/30/2003 8:19 PM Page 192

