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ONE

Crunching
Knowledge

A few years ago, I set out to design a specialized software tool
for printed-circuit board (PCB) design. One catch: T didn’t know
anything about electronic hardware. I had access to some PCB de-
signers, of course, but they typically got my head spinning in three
minutes. How was I going to understand enough to write this soft-
ware? I certainly wasn’t going to become an electrical engineer before
the delivery deadline!

We tried having the PCB designers tell me exactly what the soft-
ware should do. Bad idea. They were great circuit designers, but their
software ideas usually involved reading in an ASCII file, sorting it,
writing it back out with some annotation, and producing a report.
This was clearly not going to lead to the leap forward in productivity
that they were looking for.

The first few meetings were discouraging, but there was a glim-
mer of hope in the reports they asked for. They always involved
“nets” and various details about them. A net, in this domain, is essen-
tially a wire conductor that can connect any number of components
on a PCB and carry an electrical signal to everything it is connected
to. We had the first element of the domain model.

Net x x > Chip ’
Figure 1.1
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Figure 1.2

I started drawing diagrams for them as we discussed the things
they wanted the software to do. I used an informal variant of object

interaction diagrams to walk through scenarios.

sigm\%

signall()
—_—

PCB Expert 1: The components wouldn’t have to be chips.
Developer (Me): So I should just call them “components”?

Expert 1: We call them “component instances.” There could be many
of the same component.

Expert 2: The “net” box looks just like a component instance.

Expert 1: He’s not using our notation. Everything is a box for them, I
guess.

Developer: Sorry to say, yes. I guess I'd better explain this notation a
little more.

They constantly corrected me, and as they did I started to learn.
We ironed out collisions and ambiguities in their terminology and
differences between their technical opinions, and they learned. They
began to explain things more precisely and consistently, and we
started to develop a model together.

Expert 1: It isn’t enough to say a signal arrives at a ref-des, we have to
know the pin.
Developer: Ref-des?

Expert 2: Same thing as a component instance. Ref-des is what it’s
called in a particular tool we use.

Expert 1: Anyhow, a net connects a particular pin of one instance to a
particular pin of another.

Developer: Are you saying that a pin belongs to only one component
instance and connects to only one net?
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Expert 1: Yes, that’s right.

Expert 2: Also, every net has a topology, an arrangement that deter-
mines the way the elements of the net connect.

Developer: OK, how about this?
Component |\, % P x
lwstomce
Topolo
Figure 1.3

To focus our exploration, we limited ourselves, for a while, to
studying one particular feature. A “probe simulation” would trace
the propagation of a signal to detect likely sites of certain kinds of
problems in the design.

Developer: I understand how the signal gets carried by the Net to all
the Pins attached, but how does it go any further than that?
Does the Topology have something to do with it?

Expert 2: No. The component pushes the signal through.

Developer: We certainly can’t model the internal behavior of a chip.
That’s way too complicated.

Expert 2: We don’t have to. We can use a simplification. Just a list of
pushes through the component from certain Pins to certain others.

Developer: Something like this? Bpt‘«sheﬁszz

1B
[With considerable trial-and-error, together we push() 8. -» B3
sketched out a scenario.] signarl() ﬂ Slw

Figure 1.4
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Developer: But what exactly do you need to know from this computation?

Expert 2: We’d be looking for long signal delays—say, any signal path
that was more than two or three hops. It’s a rule of thumb. If the
path is too long, the signal may not arrive during the clock cycle.

Developer: More than three hops. . . . So we need to calculate the path
lengths. And what counts as a hop?

Expert 2: Each time the signal goes over a Net, that’s one hop.

Developer: So we could pass the number of hops along, and a Net
could increment it, like this.

pushes:
B.l->B2
B.l->B3
push()

signal(1) signal(2)

signal(1)
Et

Sigv\o\\(l)/

signal(0)
S'lg\m\( 1)

Figure 1.5
Developer: The only part that isn’t clear to me is where the “pushes”
come from. Do we store that data for every Component Instance?
Expert 2: The pushes would be the same for all the instances of a com-
ponent.
Developer: So the type of component determines the pushes. They’ll
be the same for every instance?
oM _3\61(& Map of pushes:
' 1223
type B 204
$ 23
getPushesFromPinNumber(|)
Cowmp
. st
Figure 1.6 st B
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Expert 2: I'm not sure exactly what some of this means, but I would
imagine storing push-throughs for each component would look
something like that.

Developer: Sorry, I got a little too detailed there. I was just thinking it
through. . . . So, now, where does the Topology come into it?

Expert 1: That’s not used for the probe simulation.

Developer: Then I'm going to drop it out for now, OK? We can bring
it back when we get to those features.

And so it went (with much more stumbling than is shown here).
Brainstorming and refining; questioning and explaining. The model
developed along with my understanding of the domain and their un-
derstanding of how the model would play into the solution. A class di-
agram representing that early model looks something like this.

Component Type

getPushesFromPinNumber(int)

Component Pin Net
Instance *
* 1
signal(int) signal(int) signal(int)

After a couple more part-time days of this, I felt I understood
enough to attempt some code. I wrote a very simple prototype,
driven by an automated test framework. I avoided all infrastructure.
There was no persistence, and no user interface (UI). This allowed
me to concentrate on the behavior. I was able to demonstrate a sim-
ple probe simulation in just a few more days. Although it used
dummy data and wrote raw text to the console, it was nonetheless
doing the actual computation of path lengths using Java objects.
Those Java objects reflected a model shared by the domain experts
and myself.

The concreteness of this prototype made clearer to the domain ex-
perts what the model meant and how it related to the functioning soft-
ware. From that point, our model discussions became more interactive,

Figure 1.7
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as they could see how I incorporated my newly acquired knowledge
into the model and then into the software. And they had concrete feed-
back from the prototype to evaluate their own thoughts.

Embedded in that model, which naturally became much more
complicated than the one shown here, was knowledge about the do-
main of PCB relevant to the problems we were solving. It consoli-
dated many synonyms and slight variations in descriptions. It
excluded hundreds of facts that the engineers understood but that
were not directly relevant, such as the actual digital features of the
components. A software specialist like me could look at the diagrams
and in minutes start to get a grip on what the software was about. He
or she would have a framework to organize new information and
learn faster, to make better guesses about what was important and
what was not, and to communicate better with the PCB engineers.

As the engineers described new features they needed, I made
them walk me through scenarios of how the objects interacted.
When the model objects couldn’t carry us through an important sce-
nario, we brainstormed new ones or changed old ones, crunching
their knowledge. We refined the model; the code coevolved. A few
months later the PCB engineers had a rich tool that exceeded their
expectations.

Ingredients of Effective Modeling

Certain things we did led to the success I just described.

1. Binding the model and the implementation. That crude prototype
forged the essential link early, and it was maintained through all
subsequent iterations.

2. Cultivating a language based on the model. At first, the engineers
had to explain elementary PCB issues to me, and I had to explain
what a class diagram meant. But as the project proceeded, any of
us could take terms straight out of the model, organize them into
sentences consistent with the structure of the model, and be un-
ambiguously understood without translation.

3. Developing a knowledge-rich model. The objects had behavior
and enforced rules. The model wasn’t just a data schema; it was
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integral to solving a complex problem. It captured knowledge of
various kinds.

4. Distilling the model. Important concepts were added to the
model as it became more complete, but equally important, con-
cepts were dropped when they didn’t prove useful or central.
When an unneeded concept was tied to one that was needed, a
new model was found that distinguished the essential concept so
that the other could be dropped.

5. Brainstorming and experimenting. The language, combined with
sketches and a brainstorming attitude, turned our discussions
into laboratories of the model, in which hundreds of experimen-
tal variations could be exercised, tried, and judged. As the team
went through scenarios, the spoken expressions themselves pro-
vided a quick viability test of a proposed model, as the ear could
quickly detect either the clarity and ease or the awkwardness of
expression.

It is the creativity of brainstorming and massive experimenta-
tion, leveraged through a model-based language and disciplined by
the feedback loop through implementation, that makes it possible to
find a knowledge-rich model and distill it. This kind of £nowledge

crunching turns the knowledge of the team into valuable models.

Knowledge Crunching

Financial analysts crunch numbers. They sift through reams of de-
tailed figures, combining and recombining them looking for the un-
derlying meaning, searching for a simple presentation that brings out
what is really important—an understanding that can be the basis of a
financial decision.

Effective domain modelers are knowledge crunchers. They take a
torrent of information and probe for the relevant trickle. They try one
organizing idea after another, searching for the simple view that makes
sense of the mass. Many models are tried and rejected or transformed.
Success comes in an emerging set of abstract concepts that makes
sense of all the detail. This distillation is a rigorous expression of the
particular knowledge that has been found most relevant.

KNOWLEDGE CRUNCHING
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Knowledge crunching is not a solitary activity. A team of devel-
opers and domain experts collaborate, typically led by developers.
Together they draw in information and crunch it into a useful form.
The raw material comes from the minds of domain experts, from
users of existing systems, from the prior experience of the technical
team with a related legacy system or another project in the same do-
main. It comes in the form of documents written for the project or
used in the business, and lots and lots of talk. Early versions or proto-
types feed experience back into the team and change interpretations.

In the old waterfall method, the business experts talk to the analysts,
and analysts digest and abstract and pass the result along to the pro-
grammers, who code the software. This approach fails because it
completely lacks feedback. The analysts have full responsibility for
creating the model, based only on input from the business experts.
They have no opportunity to learn from the programmers or gain ex-
perience with early versions of software. Knowledge trickles in one
direction, but does not accumulate.

Other projects use an iterative process, but they fail to build up
knowledge because they don’t abstract. Developers get the experts to
describe a desired feature and then they go build it. They show the
experts the result and ask what to do next. If the programmers prac-
tice refactoring, they can keep the software clean enough to continue
extending it, but if programmers are not interested in the domain,
they learn only what the application should do, not the principles be-
hind it. Useful software can be built that way, but the project will
never arrive at a point where powerful new features unfold as corol-
laries to older features.

Good programmers will naturally start to abstract and develop a
model that can do more work. But when this happens only in a tech-
nical setting, without collaboration with domain experts, the con-
cepts are naive. That shallowness of knowledge produces software
that does a basic job but lacks a deep connection to the domain ex-
pert’s way of thinking.

14
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The interaction between team members changes as all members
crunch the model together. The constant refinement of the domain
model forces the developers to learn the important principles of the
business they are assisting, rather than to produce functions mechan-
ically. The domain experts often refine their own understanding by
being forced to distill what they know to essentials, and they come to
understand the conceptual rigor that software projects require.

All this makes the team members more competent knowledge
crunchers. They winnow out the extraneous. They recast the model
into an ever more useful form. Because analysts and programmers are
feeding into it, it is cleanly organized and abstracted, so it can provide
leverage for the implementation. Because the domain experts are
feeding into it, the model reflects deep knowledge of the business.
The abstractions are true business principles.

As the model improves, it becomes a tool for organizing the in-
formation that continues to flow through the project. The model fo-
cuses requirements analysis. It intimately interacts with programming
and design. And in a virtuous cycle, it deepens team members’ in-
sight into the domain, letting them see more clearly and leading to
further refinement of the model. These models are never perfect;
they evolve. They must be practical and useful in making sense of the
domain. They must be rigorous enough to make the application sim-
ple to implement and understand.

Continuous Learning

When we set out to write software, we never know enough. Knowledge
on the project is fragmented, scattered among many people and docu-
ments, and it’s mixed with other information so that we don’t even
know which bits of knowledge we really need. Domains that seem less
technically daunting can be deceiving: we don’t realize how much we
don’t know. This ignorance leads us to make false assumptions.
Meanwhile, all projects leak knowledge. People who have
learned something move on. Reorganization scatters the team, and
the knowledge is fragmented again. Crucial subsystems are out-
sourced in such a way that code is delivered but knowledge isn’t.
And with typical design approaches, the code and documents don’t

CONTINUOUS LEARNING
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express this hard-earned knowledge in a usable form, so when the
oral tradition is interrupted for any reason, the knowledge is lost.

Highly productive teams grow their knowledge consciously,
practicing continuous learning (Kerievsky 2003). For developers, this
means improving technical knowledge, along with general domain-
modeling skills (such as those in this book). But it also includes seri-
ous learning about the specific domain they are working in.

These self-educated team members form a stable core of people
to focus on the development tasks that involve the most critical areas.
(For more on this, see Chapter 15.) The accumulated knowledge in
the minds of this core team makes them more effective knowledge
crunchers.

At this point, stop and ask yourself a question. Did you learn some-
thing about the PCB design process? Although this example has
been a superficial treatment of that domain, there should be some
learning when a domain model is discussed. I learned an enormous
amount. I did not learn how to be a PCB engineer. That was not the
goal. I learned to talk to PCB experts, understand the major concepts
relevant to the application, and sanity-check what we were building.

In fact, our team eventually discovered that the probe simulation
was a low priority for development, and the feature was eventually
dropped altogether. With it went the parts of the model that cap-
tured understanding of pushing signals through components and
counting hops. The core of the application turned out to lie else-
where, and the model changed to bring those aspects onto center
stage. The domain experts had learned more and had clarified the
goal of the application. (Chapter 15 discusses these issues in depth.)

Even so, the early work was essential. Key model elements were
retained, but more important, that work set in motion the process of
knowledge crunching that made all subsequent work effective: the
knowledge gained by team members, developers, and domain ex-
perts alike; the beginnings of a shared language; and the closing of a
feedback loop through implementation. A voyage of discovery has to
start somewhere.

16
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Knowledge-Rich Design

The kind of knowledge captured in a model such as the PCB exam-
ple goes beyond “find the nouns.” Business activities and rules are as
central to a domain as are the entities involved; any domain will have
various categories of concepts. Knowledge crunching yields models
that reflect this kind of insight. In parallel with model changes, devel-
opers refactor the implementation to express the model, giving the
application use of that knowledge.

It is with this move beyond entities and values that knowledge
crunching can get intense, because there may be actual inconsistency
among business rules. Domain experts are usually not aware of how
complex their mental processes are as, in the course of their work,
they navigate all these rules, reconcile contradictions, and fill in gaps
with common sense. Software can’t do this. It is through knowledge
crunching in close collaboration with software experts that the rules
are clarified, fleshed out, reconciled, or placed out of scope.

Example

Extracting a Hidden Concept

Let’s start with a very simple domain model that could be the basis of
an application for booking cargos onto a voyage of a ship.

Voyage Cargo
Figure 1.8
We can state that the booking application’s responsibility is to as-
sociate each Cargo with a Voyage, recording and tracking that rela-
tionship. So far so good. Somewhere in the application code there
could be a method like this:
pubTlic int makeBooking(Cargo cargo, Voyage voyage) {
int confirmation = orderConfirmationSequence.next();
voyage.addCargo(cargo, confirmation);
return confirmation;
}
Because there are always last-minute cancellations, standard
practice in the shipping industry is to accept more cargo than a par-
ticular vessel can carry on a voyage. This is called “overbooking.”
KNOWLEDGE-RICH DESIGN 17
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Sometimes a simple percentage of capacity is used, such as booking
110 percent of capacity. In other cases complex rules are applied, fa-
voring major customers or certain kinds of cargo.

This is a basic strategy in the shipping domain that would be
known to any businessperson in the shipping industry, but it might
not be understood by all technical people on a software team.

The requirements document contains this line:

Allow 10% overbooking.

The class diagram and code now look like this:

Voyage Cargo

Figure 1.9 capacity size

public int makeBooking(Cargo cargo, Voyage voyage) {
double maxBooking = voyage.capacity() = 1.1;
if ((voyage.bookedCargoSize() + cargo.size()) > maxBooking)
return -1;
int confirmation = orderConfirmationSequence.next();
voyage.addCargo(cargo, confirmation);
return confirmation;

}

Now an important business rule is hidden as a guard clause in an
application method. Later, in Chapter 4, we’ll look at the principle of
LAYERED ARCHITECTURE, which would guide us to move the over-
booking rule into a domain object, but for now let’s concentrate on
how we could make this knowledge more explicit and accessible to
everyone on the project. This will bring us to a similar solution.

1. As written, it is unlikely that any business expert could read this
code to verify the rule, even with the guidance of a developer.

2. It would be difficult for a technical, non-businessperson to con-
nect the requirement text with the code.

If the rule were more complex, that much more would be at
stake.

We can change the design to better capture this knowledge. The
overbooking rule is a policy. Policy is another name for the design
pattern known as STRATEGY (Gamma et al. 1995). It is usually moti-
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vated by the need to substitute different rules, which is not needed
here, as far as we know. But the concept we are trying to capture does
fit the mzeaning of a policy, which is an equally important motivation

in domain-driven design. (See Chapter 12, “Relating Design Patterns
to the Model.”)

Voyage Cargo

capacity size

{sum(cargo.size) < vbyage.capacity *1.1}

Overbooking
Policy

The code is now:

pubTlic int makeBooking(Cargo cargo, Voyage voyage) {
if ('overbookingPolicy.isAllowed(cargo, voyage)) return -1;
int confirmation = orderConfirmationSequence.next();
voyage.addCargo(cargo, confirmation);
return confirmation;

}

The new Overbooking Policy class contains this method:

public boolean isAllowed(Cargo cargo, Voyage voyage) {
return (cargo.size() + voyage.bookedCargoSize()) <=
(voyage.capacity() » 1.1);
}

It will be clear to all that overbooking is a distinct policy, and the
implementation of that rule is explicit and separate.

Now, [ amz not recommending that such an elaborate design be ap-
plied to every detail of the domain. Chapter 15, “Distillation,” goes
into depth on how to focus on the important and minimize or sepa-
rate everything else. This example is meant to show that a domain
model and corresponding design can be used to secure and share
knowledge. The more explicit design has these advantages:

1. In order to bring the design to this stage, the programmers and
everyone else involved will have come to understand the nature

Figure 1.10

KNOWLEDGE-RICH DESIGN
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of overbooking as a distinct and important business rule, not just
an obscure calculation.

2. Programmers can show business experts technical artifacts, even
code, that should be intelligible to domain experts (with guid-
ance), thereby closing the feedback loop.

Deep Models

Useful models seldom lie on the surface. As we come to understand
the domain and the needs of the application, we usually discard su-
perficial model elements that seemed important in the beginning, or
we shift their perspective. Subtle abstractions emerge that would not
have occurred to us at the outset but that pierce to the heart of the
matter.

The preceding example is loosely based on one of the projects
that I'll be drawing on for several examples throughout the book: a
container shipping system. The examples in this book will be kept ac-
cessible to non-shipping experts. But on a real project, where contin-
uous learning prepares the team members, models of utility and
clarity often call for sophistication both in the domain and in model-
ing technique.

On that project, because a shipment begins with the act of book-
ing cargo, we developed a model that allowed us to describe the
cargo, its itinerary, and so on. This was all necessary and useful, yet
the domain experts felt dissatisfied. There was a way they looked at
their business that we were missing.

Eventually, after months of knowledge crunching, we realized
that the handling of cargo, the physical loading and unloading, the
movements from place to place, was largely carried out by subcon-
tractors or by operational people in the company. In the view of our
shipping experts, there was a series of transfers of responsibility be-
tween parties. A process governed that transfer of legal and practical
responsibility, from the shipper to some local carrier, from one carrier
to another, and finally to the consignee. Often, the cargo would sit in
a warehouse while important steps were being taken. At other times,
the cargo would move through complex physical steps that were not
relevant to the shipping company’s business decisions. Rather than
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the logistics of the itinerary, what came to the fore were legal docu-
ments such as the bill of lading, and processes leading to the release
of payments.

This deeper view of the shipping business did not lead to the re-
moval of the Itinerary object, but the model changed profoundly.
Our view of shipping changed from moving containers from place to
place, to transferring responsibility for cargo from entity to entity.
Features for handling these transfers of responsibility were no longer
awkwardly attached to loading operations, but were supported by a
model that came out of an understanding of the significant relation-
ship between those operations and those responsibilities.

Knowledge crunching is an exploration, and you can’t know
where you will end up.

DEEP MODELS
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